
P O S T E R

S P R I N G 2 0 1 4 – 2 9 t h E D I T I O N

digital-forensics.sans.org

Rogue Processes
Malware authors generally pick one of two strategies for obscuring their malicious processes: hide
in plain sight and attempt to appear legitimate, or use code injection and/or rootkit methods to
hide from the view of normal analysis tools. See below for more on code injection and rootkits.

When searching for malware attempting to hide in plain sight, look for process names that appear
legitimate but originate from the wrong directory path or with the wrong parent process or SID.
Look for misspellings like scvhost.exe or lssass.exe and check for unusual command-
line arguments. See the opposite side of this poster for legitimate Windows process details.

Besides processes, also look for suspicious DLLs executed through rundll32.exe, implemented
as services with svchost.exe, or injected into legitimate processes.

Checking for signed code can help reveal suspicious executables. While there have been and
will continue to be signed malware, you can typically rely on code signed by a company you
trust using a certificate from a trusted CA. For example, on a default installation of Windows 7
Enterprise, all running processes, device drivers, services, and scheduled tasks are signed by
Microsoft. For live response memory analysis, Mandiant’s Redline will check on-disk signatures
for running code. For offline analysis, Didier Stevens’ Authenticode Tools or Sysinternal’s sigcheck.exe
provide a tremendous amount of information about a file’s digital signature.

Evidence of Persistence
Malware commonly accomplishes persistence using a variety of techniques. The most often used capability to
achieve persistence with elevated rights is through scheduled tasks using the “at” command. With elevated
rights, an adversary can create a service to automatically load malware or replace an existing service with
a new malicious executable. The next most common malware persistence mechanism is using the registry
auto-start mechanisms to load malware at boot or during user logon. Some of the latest techniques include
DLL Search Order Hijacking and using local group policy to run scripts at logon/logoff. Finally, malware can
also be installed as a Microsoft Office Add-in. When MS Word starts, the malware is executed.

• Scheduled Tasks	 • Auto-Start Registry Keys

• Service Replacement	 • DLL Search Order Hijacking

• Service Creation	 • Trojaned Legitimate System Libraries

• More Advanced – PowerShell background job, Local Group Policy, MS Office Add-In, or BIOS Flashing

Poster References
• �Windows Internals, 6th Edition, Parts 1 & 2
• Rootkit Arsenal, 2nd Edition
• �Windows Sysinternals Administrator’s Reference
• And the following SANS courses:

 - Securing Windows (SEC505)

 - Advanced Incident Response (FOR508)

 - Memory Forensics (FOR526)

 - REM: Malware Analysis (FOR610)

Unusual OS Artifacts
Malware does not need to be present on a system for it to be compromised.
We need to also look for unusual OS-based artifacts that would not exist on
a typical workstation in the organization. When looking for program execution,
focus on prefetch, shimcache, userassist registry keys, and even jump lists.
Many of these artifacts can result from an adversary using your system but
not implanting malware. Look for evidence showing odd behavior such as
tools being run outside the scope of non-techincal or normal user activity:

• cmd.exe execution – Provides command-line access

• �rar.exe execution or presence of .rar files – Difficult to crack
archiving tool for data exfiltration

• �at.exe or schtasks.exe execution – Used for privilege
escalation and persistence

• �Existence of Sysinternals tools such as PsExec, PsLoggedOn, and
ProcDump – Provide remote execution, interactive logon enumeration,
and dumping of credentials within lsass.exe address space respectively

• �wmic.exe, powershell.exe, or winrm.vbs execution –
Used for remote execution

• �net.exe execution – Used for mapping drives for lateral movement
and enumerating groups like “Domain Admins”

• �reg.exe or sc.exe execution – Add persistence such as Run keys
or services

• �MountPoints2 registry key – Records shares on remote systems
such C$,  Temp$, etc.

• �.job files in C:\Windows\Tasks – Related to odd application
executions

Code Injection and Rootkit Behavior
Code injection and rootkits provide stealth to malware by hiding it from
normal analysis techniques. Fortunately, memory analysis provides an effective
mechanism for detecting both of these behaviors.

Typical code injection techniques provide an effective way to hide code without
relying upon low-level programming knowledge, thus making it very popular
among malware authors. Code injection is almost never legitimate, with the one
exception of software debugging. Therefore, finding evidence of code injection
on a standard system is almost always worth looking into further.

A rootkit is a broad term for describing ways of subverting the operating
system with the intent to hide activities and data. There are a number of
techniques for doing this, but the end result is stealthy malware that is often
undetectable by security tools running on the system. That said, there are a few
rootkit detection tools available, such as GMER and Rootkit Revealer,
that can compare the state of the system as determined by the OS versus
the state determined by the tool. When there are differences, it is often an
indication of rootkit behavior.

The most effective technique for detecting rootkits is via memory forensics, since
offline memory analysis does not rely on the compromised OS. For example,
memory forensics can identify running processes even if they are unlinked by a
rootkit. It can also help locate suspicious function hooks, which are essentially
redirects to malicious code. Fortunately, rootkits are relatively rare due to the
skill required to create a reliable exploit across the various Windows versions.

Memory analysis tools like Mandiant Redline and Volatility provide robust
features for finding code injection and rootkit behaviors.

Unknown Services
Windows services are designed to run applications in the background without user interaction.
Many services are required at system boot, including the DHCP Client, Windows Event Log, Server,
and Workstation services. These services provide critical functionality for the OS and must be started
immediately without requiring user input.

Services can be implemented as standalone executables or loaded as DLLs. In order to conserve
resources, many service DLLs are grouped together and run under a smaller set of svchost.exe
instances. svchost.exe is a Windows generic service host process, and it is typical to see
several running instances of svchost.exe (5 or more is common).

Service configurations, as well as device driver configurations, are stored in the registry under
HKLM\SYSTEM\CurrentControlSet\Services. The keys here provide the parameters
for each service, including the service name, display name, path to the service’s executable image
file, the start type, required privileges, dependencies, and more. Each service has a start type
configured to start at boot, by manual intervention, or on trigger events such as obtaining an IP
address or hardware device connections. Windows services provide great flexibility to developers, and
similarly malware authors, for automatically running code on a Windows host.

For offline analysis, investigate service configurations within the registry. On live or remote systems,
use the built-in “sc” command to query installed services. Try parameters such as “queryex”,
“qc”, “qprivs”, and “qtriggerinfo” to get detailed information on service configurations.

Suspicious Network Activity
Many core processes in Windows utilize the network, including svchost.exe,
lsass.exe, and even the System process. Since you can’t rule out the possibility
of legitimate network activity from these processes, you need an effective way to identify
illegitimate network activity. With memory analysis, one can parse through existing and even
residual connections and sockets established by the system. When you are just starting to
try to identify unusual network behavior, keep an eye out for the following:

• Any process communicating over port 80, 443, or 8080 that is not a browser

• Any browser not communicating over port 80, 443, or 8080

• �Connections to unexplained internal or external IP addresses. For example, why did
a process have a TCP connection to a system in Moldova?

• �Web requests directly to an IP address rather than a domain name

• �RDP connections (port 3389), particularly if originating from odd IP addresses.
External RDP connections are typically routed through a VPN concentrator.

• �DNS requests for unusual domain names

FOR408
Computer Forensic

Investigations –
Windows In-Depth

GCFE

FOR108
Digital

Forensic
Foundations

SEC504
Hacker Techniques,

Exploits, and
Incident Handling

GCIH

C O R E

I N - D E P T H

FOR508
Advanced Computer
Forensic Analysis &
Incident Response

GCFA

FOR572
Advanced
Network

Forensics and
Analysis

FOR610
REM: Malware
Analysis Tools
and Techniques

GREM

S P E C I A L I Z A T I O N

FOR526
Windows
Memory
Forensics
In-Depth

FOR518
Mac

Forensic
Analysis

FOR585
Advanced

Smartphone
Forensics

S A N S D F I R C urriculum

Unusual Windows
Behavior:

Rogue Processes

Unknown Services

Code Injection and Rootkit Behavior

Unusual OS Artifacts

Suspicious Network Activity

Evidence of Persistence

In an intrusion case, spotting
the difference between
abnormal and normal is

often the difference between
success and failure. Your

mission is to quickly identify
suspicious artifacts in order
to verify potential intrusions.
Use the information below
as a reference for locating
anomalies that could reveal
the actions of an attacker.

Memory Artifacts OS Artifacts

This poster was created by SANS instructors Mike Pilkington and Rob Lee.

sansforensics

@sansforensics

digital-forensics.sans.org/blog

http://gplus.to/sansforensics

http://digital-forensics.sans.org
http://www.sans.org/courses/forensics
https://twitter.com/sansforensics
https://www.facebook.com/pages/SANS-Institute/173623382673767
feed://digital-forensics.sans.org/blog
http://gplus.to/sansforensics

Process Hacker

Hacker View Tools Users Help

Refresh Options

Processes Services Network Disk

Search Processes (Ctrl+K)

Name

CPU Usage: 4.50% Physical Memory: 20.67% Processes: 125

csrss.exe

Interrupts
smss.exe

lsass.exe

svchost.exe
svchost.exe
svchost.exe

svchost.exe
svchost.exe
svchost.exe

svchost.exe
svchost.exe

svchost.exe

spoolsv.exe

taskhost.exe
SearchIndexer.exe

sppsvc.exe

dwm.exe
svchost.exe

winlogon.exe

iexplore.exe
iexplore.exe

wininit.exe

System

csrss.exe

services.exe

lsm.exe

explorer.exe

System Idle Process

Image Path: \Program Files\Internet Explorer\iexplore.exe
[or \Program Files (x86)\Internet Explorer\iexplore.exe]

Parent Process: explorer.exe
Number of Instances: 0 to many

User Account: <logged-on user(s)>

Start Time: Typically when user starts Internet Exploer. However, it can be started without explicit
user interaction via the “-embedding” switch (in which case, parent may not be explorer.exe).
Description: Internet Explorer (IE) is a typical desktop application launched by a user. Such applications will almost
always be a child of explorer.exe. Modern versions of IE will have a sub-process for each open tab. It does this for
several reasons, including enhanced security. When accessing an Internet site, IE will run the tab process with low integrity,
which sandboxes the process, making it more difficult for attackers to modify sensitive areas of the registry or file system if
they are able to compromise the IE child process. Attackers often name their malware iexplore.exe and place it in
an alternate directory or misspell iexplore.exe as iexplorer.exe.

iexplore.exe

Image Path: %SystemRoot%\System32\csrss.exe
Parent Process: Created by an instance of smss.exe that exits,
so analysis tools usually do not provide the parent process name.

Number of Instances: Two or more

User Account: Local System
Start Time: Within seconds of boot time for the first 2 instances
(for Session 0 and 1). Start times for additional instances occur as new
sessions are created, although often only Sessions 0 and 1 are created.
Description: The Client/Server Run-Time Subsystem is the user-mode process for
the Windows subsystem. Its duties include managing processes and threads, importing
most of the DLLs that provide the Windows API, and facilitating shutdown of the GUI
during system shutdown. An instance of csrss.exe will run for each session.
Session 0 is for services and Session 1 for the local console session. Additional sessions
are created through the use of Remote Desktop and/or Fast User Switching. Each new
session results in a new instance of csrss.exe. Depending on the OS version,
csrss.exe (prior to Win7/2008 R2) or its child process conhost.exe
(Win7/2008 R2 and later) contain command history for instances of cmd.exe.
Searching the address space for these processes is particularly useful when analyzing the
memory of compromised hosts.

Image Path: %SystemRoot%\System32\services.exe
Parent Process: wininit.exe
Number of Instances: One
User Account: Local System
Start Time: Within seconds of boot time
Description: Implements the Unified Background Process Manager (UBPM),
which is responsible for background activities such as services and scheduled tasks.
Services.exe also implements the Service Control Manager (SCM), which
specifically handles the loading of services and device drivers marked for auto-start. In
addition, once a user has successfully logged on interactively, the SCM
(services.exe) considers the boot successful and sets the Last Known Good
control set (HKLM\SYSTEM\Select\LastKnownGood) to the value of
the CurrentControlSet.

Image Path: %SystemRoot%\System32\svchost.exe
Parent Process: services.exe
Number of Instances: Five or more

User Account: Varies depending on svchost instance, though it
typically will be Local System, Network Service, or Local Service accounts.
Instances running under any other account should be investigated.

Start Time: Typically within seconds of boot time. However,
services can be started after boot, which might result in new instances of
svchost.exe well after boot time.
Description: The generic host process for Windows Services. It is used for
running service DLLs. Windows will run multiple instances of svchost.exe, each
using a unique “-k” parameter for grouping similar services. Typical “-k” parameters
include BTsvcs, DcomLaunch, RPCSS, LocalServiceNetworkRestricted, netsvcs, LocalService,
NetworkService, LocalServiceNoNetwork, secsvcs, and LocalServiceAndNoImpersonation.
Malware authors often take advantage of the ubiquitous nature of svchost.exe
and use it either directly or indirectly to hide their malware. They use it directly by
installing the malware as a service in a legitimate instance of svchost.exe.
Alternatively, they use it indirectly by trying to blend in with legitimate instances of
svchost.exe, either by slightly misspelling the name (e.g., scvhost.exe)
or spelling it correctly but placing it in a directory other than System32. Keep in mind
that a legitimate svchost.exe should always run from
%SystemRoot%\System32, should have services.exe as its parent,
and should host at least one service. Also, on default installations of Windows 7, all
service executables and all service DLLs are signed by Microsoft.

Image Path: %SystemRoot%\System32\lsm.exe
Parent Process: wininit.exe
Number of Instances: One
User Account: Local System
Start Time: Within seconds of boot time
Description: Local Session Manager handles terminal services, including Remote
Desktop sessions as well as additional local sessions via Fast User Switching. It
communicates with smss.exe to start new sessions. Smss in turn creates an
additional csrss.exe and winlogon.exe to support the new session. Only
one instance of this process should occur and it should never have child processes.

Image Path: %SystemRoot%\explorer.exe
Parent Process: Created by an instance of userinit.exe that
exits, so analysis tools usually do not provide the parent process name.

Number of Instances: One per interactively logged-on user
User Account: <logged-on user(s)>

Start Time: Starts when the owner’s interactive logon begins
Description: At its core, Explorer provides users access to files. Functionally
though, it is both a file browser via Windows Explorer (though still explorer.exe)
and a user interface providing features such as the user’s Desktop, the Start Menu, the
Taskbar, the Control Panel, application launching via file extension association, and shortcut
files. Note that there should be just one running instance of explorer.exe per
interactive logon, regardless of multiple Windows Explorer windows opened by the user.
Also notice that the legitimate explorer.exe resides in the %SystemRoot%
directory rather than %SystemRoot%\System32. Attackers often name their
malware explorer.exe and place it in System32 or misspell explorer.exe
as explore.exe.

csrss.exe

services.exe

svchost.exe

explorer.exe

lsm.exe

When searching for malicious processes, look for any of these
anomalous characteristics:

• Started with the wrong parent process
• Image executable is located in the wrong path
• Misspelled processes
• Processes that are running under the wrong account (incorrect SID)
• �Processes with unusual start times (i.e., starts minutes or hours

after boot when it should be within seconds of boot)
• �Unusual command-line arguments
• �Packed executables

Knowing what’s normal on a Windows host helps cut through the noise to quickly locate potential malware.
Use the information below as a reference to know what’s normal in Windows and to focus your attention on the outliers.

Image Path: N/A – Not generated from an executable image

Parent Process: None
Number of Instances: One
User Account: Local System
Start Time: At boot time
Description: The System process is responsible for most kernel-mode threads.
Modules run under System are primarily drivers (.sys files), but also several
important DLLs as well as the kernel executable, ntoskrnl.exe.

Image Path: %SystemRoot%\System32\smss.exe
Parent Process: System
Number of Instances: One master instance and another child
instance per session. Children exit after creating their session.

User Account: Local System
Start Time: Within seconds of boot time for the master instance
Description: The Session Manager process is responsible for creating new sessions.
The first instance creates a child instance for each new session. Once the child instance
initializes the new session by starting the Windows subsystem (csrss.exe) and
wininit.exe for Session 0 or winlogon.exe for Session 1 and higher, the
child instance exits.

Image Path: %SystemRoot%\System32\wininit.exe
Parent Process: Created by an instance of smss.exe that exits,
so tools usually do not provide the parent process name.

Number of Instances: One
User Account: Local System
Start Time: Within seconds of boot time
Description: Wininit starts key background processes within Session 0. It starts
the Service Control Manager (services.exe), the Local Security Authority process
(lsass.exe), and the Local Session Manager (lsm.exe).

Image Path: %SystemRoot%\System32\taskhost.exe
Parent Process: services.exe
Number of Instances: One or more

User Account: Multiple taskhost.exe processes are normal. One or
more may be owned by logged-on users and/or by local service accounts.

Start Time: Start times vary greatly
Description: The generic host process for Windows Tasks. Tasks are similar
in nature to services, and in fact beginning with Windows 7, are handled through
the same Universal Background Process Manager (UBPM) facility. Upon initialization,
taskhost.exe runs a continuous loop listening for trigger events. Example
trigger events that can initiate a task include a defined schedule, user logon, system
startup, idle CPU time, a Windows log event, workstation lock, or workstation unlock.

There are more than 70 tasks preconfigured on a default installation of Windows 7
Enterprise (though many are disabled). For example, defrag.exe is scheduled to run
against all volumes every Wednesday at 1:00 am. Another default task backs up the
core registry hive files every 10 days. All executable files (DLLs & EXEs) used by the
default Windows 7/8 scheduled tasks are signed by Microsoft.

Image Path: %SystemRoot%\System32\lsass.exe
Parent Process: wininit.exe
Number of Instances: One
User Account: Local System
Start Time: Within seconds of boot time
Description: The Local Security Authentication Subsystem Server process is
responsible for authenticating users by calling an appropriate Security Service Provider
(SSP) authentication package specified in
HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Typically this
will be the Kerberos SSP for domain accounts or the MSV1_0 SSP for local accounts.
Once a user is authenticated, lsass.exe generates an access token for the user
that specifies security rights and constraints for the user and the user’s processes. Only
one instance of this process should occur and it should never have child processes.

Image Path: %SystemRoot%\System32\winlogon.exe
Parent Process: Created by an instance of smss.exe that exits,
so analysis tools usually do not provide the parent process name.

Number of Instances: One or more

User Account: Local System
Start Time: Within seconds of boot time for the first instance (for
Session 1). Start times for additional instances occur as new sessions are
created, typically through Remote Desktop or Fast User Switching logons.
Description: Winlogon handles interactive user logons and logoffs. It launches
LogonUI.exe, which accepts the username and password at the logon screen and
passes the credentials to lsass.exe to validate the credentials. Once the user
is authenticated, Winlogon loads the user’s NTUSER.DAT into HKCU and starts the
user’s shell (explorer.exe) via Userinit.exe.

wininit.exe

smss.exe

lsass.exe

winlogon.exe

System

taskhost.exe

sansforensics

@sansforensics

digital-forensics.sans.org/blog

http://gplus.to/sansforensics

Process listing from Windows 7 Enterprise

https://www.facebook.com/pages/SANS-Institute/173623382673767
feed://digital-forensics.sans.org/blog
http://gplus.to/sansforensics
https://twitter.com/sansforensics

