

351

12

Auditing Categories

In the previous chapter you learned about several common regulations that
affect database auditing projects and how to use these requirements in the
context of defining an auditing project. It’s time to see what auditing cate-
gories you may need to implement in your environment in order to comply
with these requirements. Because the database is so rich in functionality,
you can produce many types of audit trails for a database environment.
This does not mean that every category mentioned in this chapter is right
for you, but knowing what categories exist and how you can implement
them will help you address compliance requirements.

As mentioned in the previous chapter, the key to a good auditing
implementation is to understand what the requirements are and to use
reverse mapping to see what requirements you can check off using the
auditing categories listed in this chapter. This chapter can therefore be
used as a catalog from which you can pick audit trails to implement, and
possibly in what order.

12.1 Audit logon/logoff into the database

When you walk into a meeting in a corporate office, the first thing you’re
asked to do is sign in at the front desk. Among other things, this ensures
that the company has a full log of anyone who came into the building,
which may be useful to track down and investigate “who done it” when
something goes wrong. This log usually records who you are, when you
came in, and when you left. The same process is true for any database, and
the first category of auditing that is required in most environments is a full
audit trail of anyone who has signed onto the database.

You will need to record two events for this audit category: an event for
the sign-on and an event for the sign-off. For each such event, you need to
save at least the login name used for signing on and a timestamp for the

352

12.1

Audit logon/logoff into the database

event, but you should consider recording additional information. This
includes the TCP/IP address of the client initiating the connection and the
program used to initiate the connection. For example, in an Oracle envi-
ronment, you will want to know if the connection was initiated from SQL
Plus, TOAD, and such tools as opposed to a data source in Excel or a J2EE
server.

In addition to these two events, you should also record all failed login
attempts. In fact, failed login events are probably even more important than
successful logins from a security point of view. Failed login attempts are not
only recorded for auditing and compliance purposes; they are often used as
the basis for alerts and even for account lockout.

Although you may keep these three event types in the same file or table,
you will probably report on them differently. Successful logon/logoff
reports are not something most people look at unless they are doing some
kind of investigation, because these logs reflect normal operations. Apart
from investigations, an exception could be comparing files from different
periods to see if patterns are changing. However, excessive failed logins are
certainly an interesting security report, and many people periodically look
at the breakdown of these failed login attempts based on the following
dimensions:

�

The username

�

The client IP from which connections are failing

�

Source program

�

Time of day

For example, Figure 12.1 shows two views, including a breakout of
failed logins based on the login name (left) and a report showing a detailed
view of failed logins, what login name was used, which IP address the con-
nection requests came from, to which database server, and what the com-
munication type was (right).

Logon and logoff activity can be audited using database features or by
using an external database security solution. All database vendors support
this basic auditing function, and because the number of these events is
rather small (at least when compared with the number of events you may
get when auditing actual SQL calls), there is little performance penalty in
having the database perform this level of auditing.

12.1

Audit logon/logoff into the database 353

Chapter 12

In Section 9.6

you saw how to implement this type of audit trail in DB2
using event monitors and how to implement this type of audit trail in SQL
Server using traces. While the context in that section was actually one of a
hacker trying to plant a Trojan that collects this information to be used in
launching an attack, the methods shown are precisely what you would use
to create a login/logout audit trail in DB2 or SQL Server. Oracle has more
than one way to produce this audit trail, but perhaps the easiest one is using
system-level triggers that have been around since Oracle 8i.

Just as an Oracle trigger fires when you insert or update a row, a system-
level trigger fires at specific system events such as logon, logoff, and DDL
execution. Let’s see how to implement this type of audit trail.

First, create a table where you will keep the information:

create table user_login_audit

(

 user_id varchar2(30),

 session_id number(8),

 host varchar2(30),

 login_day date,

 login_time varchar2(10),

 logout_day date,

 logout_time varchar2(10)

);

Next, create the trigger to be fired upon a new login:

create or replace trigger

 user_login_audit_trigger

AFTER LOGON ON DATABASE

Figure 12.1

Failed login
reports.

354

12.1

Audit logon/logoff into the database

BEGIN

insert into user_login_audit values(

 user,

 sys_context('USERENV','SESSIONID'),

 sys_context('USERENV','HOST'),

 sysdate,

 to_char(sysdate, 'hh24:mi:ss'),

 null,

 null

);

COMMIT;

END;

Most of the data is populated upon login, but the logout date and time
are populated using the trigger that is fired when the user logs out:

create or replace trigger

 user_logout_audit_trigger

BEFORE LOGOFF ON DATABASE

BEGIN

-- logout day

update

 user_login_audit

set

 logout_day = sysdate

where

 sys_context('USERENV','SESSIONID') = session_id;

-- logout time

update

 user_login_audit

set

 logout_time = to_char(sysdate, 'hh24:mi:ss')

where

 sys_context('USERENV','SESSIONID') = session_id;

COMMIT;

END;

That’s all you need to do in an Oracle environment. If you run a Sybase
environment, it is even easier, because you can audit all access to all data-
bases using the following commands:

sp_configure “auditing”, 1

go

sp_audit “dbaccess”, “all”, “all”, “on”

go

12.1

Audit logon/logoff into the database 355

Chapter 12

Implementing alerting or account lockout based on failed logins
requires support from either your database vendor or your database security
solution. If you use the database to generate the audit trail for login/logout
and your database vendor implements account lockout capabilities, then
you can set that up within your database environment. For example, in Sec-
tion 4.4

you saw how to set up an Oracle password policy. In another envi-
ronment (e.g., SQL Server 2000), you cannot do this using native database
features and need to either write code that inspects the Windows event log
looking for collections of failed logins or use an external security system.

When using an external security system, you can use a SQL firewall that
will block any connection using the login name after a certain number of
failed login attempts. In this case, the database will not even get the connec-
tion attempts. because they would be rejected at the firewall level. Another
option (which does not require you to put a security system in front of the
database) is to use database procedures, as shown in Figure 12.2. In this case
the auditing system generates an alert when the number of failed logins
exceeds a certain threshold. The alert is sent to a system that is responsible
to connect to the database and call a procedure that locks out the account.
This system would typically also notify the DBA that this action has been
taken so that an investigation would be initiated and the account released if
needed.

Figure 12.2

Locking out an
account using an

alert and a
database procedure.

356

12.2

Audit sources of database usage

In addition to creating an audit trail, login information can be used to
create a baseline that may help you in identifying anomalies. A baseline for
user login activity is a mapping of “normal” login behavior. Such a baseline
is built by looking at all login activity over the course of a certain period of
time (e.g., a week, a month). The baseline is built by listing all possible
combinations and classifying them. For example, you can classify logins by
network location, username, source programs, and time of day, in which
case a baseline may look similar to the following:

user1 192.168.1.168 JDBC 24Hrs.

user2 192.168.X.X Excel Normal Business Hours (9-5)

user3 10.10.10.x isql Weekends

This baseline says that based on all of the login activity seen in the rele-
vant recording period, user1 always comes in from 192.168.1.168 (e.g., it is
the application server) and works around the clock. User2 is used to con-
nect to the database from Excel, is used from multiple nodes on the net-
work all within the 192.168 subnet, and is not used outside of normal
business hours. Finally, user3 is used when access is initiated from isql,
works over the weekend, and can come from any node on the 10.10.10
subnet.

Once you have this baseline, you can report on or alert on divergence
from normal operations. If, for example, you see a successful login using
user1 but from an IP address that is different from 192.168.1.168 and
using a tool such as SQL Navigator, then either your environment has
changed or possibly someone managed to take the username and password
from the application server and is using it to extract information from your
database (see Section 5.1).

As another example, a login using user2 at 2 a.m.
can be suspicious. It may just be that someone is working late, but depend-
ing on your environment, sensitivity, and how locked down your environ-
ment needs to be, it may be something you need to look into.

12.2 Audit sources of database usage

Related to the auditing of login activity is the auditing of client source
information. This includes auditing which network node is connected to
the database (e.g., using an IP address or a host name) and auditing which
application is being used to access the database.

Although this information is normally one of the values you should cap-
ture when you audit database connections, it is often important to capture

ronb
Note
works around the clock->may be connected at any time during the day

12.2

Audit sources of database usage 357

Chapter 12

this information at a SQL call level. In addition to knowing that a user con-
nected using Excel rather than the SAP system, you may also need to know
whether a certain update was performed from an Excel spreadsheet as
opposed to the SAP system. Therefore, the source program is often data
that you should collect per query and per database operation that you want
to keep in the audit trail, especially if the IP address uniquely identifies a
user. If your architecture is based on client/server, then the source IP
address often identifies a unique user (a person). In this case, tracking and
reporting on the IP address per SQL call is as good as reporting on which
end user did what operation and looked at what data—a valuable audit
trail. If, on the other hand, you use an application server architecture, then
the IP address will not help you identify and report on the end user and you
will have to resort to techniques learned in Chapter 6.

Another decision that you will normally have to make when auditing
and presenting audit information has to do with whether you present raw
data or whether you present it as data that is easier to consume. For exam-
ple, the left side of Figure 12.3 shows which source programs are used to
access the SQL Server running on 155.212.221.84. This information is
useful to people who know the environment intimately. The report on the
right side of Figure 12.3 is meaningful to more people, who don’t care
about the IP address but know what the HR database is, and people who
don’t know what Aqua Data Studio is but understand the risks associated
with a developer tool logged into the production HR database.

The issue of data abstraction is not only related to auditing the client
source of database usage. It is a general topic relevant to all audits that are
discussed in this chapter. However, as Figure 12.4 shows, it is especially
important in source identification, where IP addresses may not be meaning-
ful but where hostnames or even labels attached to nodes are informative.

Figure 12.3

Viewing database information (IP and application type) in raw form and
in business terms.

ronb
Note
will normally have to make -> may need to make

358

12.3

Audit database usage outside normal operating hours

12.3 Audit database usage outside normal
operating hours

Another topic that is related to the audit of database login is an audit of
activities being performed outside of normal business hours. This is an
intuitive requirement and one that is often required from a business and a
compliance standpoint.

The intuitive requirement of auditing database usage outside of normal
operating hours is needed because activities performed during off-hours are
often suspect and may be a result of an unauthorized user trying to access or
modify data. Of course, a good hacker will usually try to breach the data-
base during a “camouflaged” period. It is far better to try when there is a lot
of “noise” that serves as a diversion. However, less sophisticated misuse does
often occur at night or early in the morning, and many people do watch a
lot of movies that have people sneaking around the office at night doing
inappropriate things.

When you audit off-hours activity, it is usually not enough to track only
logins and logouts that occur off-hours. You will generally also want to cap-
ture what activities are performed—usually at a SQL level. If such logins are
suspect, then it is important to capture what they were used to do within
the database. Having a full audit trail of all activities that were performed
by any user outside of normal operating hours is therefore often a good cat-
egory to implement and will satisfy many regulatory and internal compli-
ance requirements.

Although intuitively an off-hours audit trail makes a lot of sense, at a
technical level you must be clear on the definition, because most database
environments work 24-by-7, and you don’t want to start generating tons of
false alarms whenever an ETL script performs massive data uploads outside
normal operating hours. Therefore, the key to a good implementation of

Figure 12.4

Viewing client
source information

(client IP and
source application)

in raw form and in
business terms.

12.4

Audit DDL activity 359

Chapter 12

this audit trail is not to include activities that are

always

scheduled to run in
off-hours as part of this audit trail.

Another approach to filtering out the normal activities that occur out-
side normal hours is to use a baseline. If you baseline your database access,
you may see activities such as the following:

user1 192.168.1.168 SQLLoader 2am-4am

user2 192.168.1.168 ETL 12am-6am

If you see this type of activity occurring every night, then your off-hours
audit trail should exclude any activity performed by these applications,
using these login names, and coming from these IP addresses (or, as is often
the case, from the localhost). Auditing only what diverges from the baseline
helps reduce the size of the audit trails you may need to inspect, because
activities that will be recorded are only those activities that are occurring
outside of the norm.

12.4 Audit DDL activity

Schema change audits, or, more specifically, DDL activity audits have
always been important and have recently become one of the most imple-
mented audit trails. This is perhaps because schema change audits are
important from a security standpoint, from a compliance standpoint, and
from a configuration management and process standpoint. From a security
standpoint, DDL commands are potentially the most damaging commands
that exist and can certainly be used by an attacker to compromise any sys-
tem. Even stealing information may often involve DDL commands (e.g.,
through the creation of an additional table into which data can be copied
before extraction). From a compliance standpoint, many regulations require
you to audit any modification to data structures such as tables and views.
Some HIPAA requirements, for example, can be directly interpreted as a
need to audit schema changes.

Regulatory requirements to audit schema changes are not always needed
because of security. Sometimes the need is to avoid errors and to discover
problems quickly. It is therefore not surprising that compliance require-
ments for schema changes auditing are often similar to the requirements
defined as part of configuration management and IP governance initiatives.
The example with HIPAA and schema changes is a good one. Changes to
the schema need to be audited and saved for future reference as a way to
identify and quickly resolve errors that may compromise data portability or

360

12.4

Audit DDL activity

that may cause data corruption. In other cases, auditing of DDL activity is
done to eliminate errors that developers and DBAs may introduce and that
can have catastrophic effects. For example, a client I once worked for had a
downtime of almost two days because of a change that was done by a devel-
oper—a change that the developer thought was being done on the
development server but was mistakenly done on the production server.
Tight controls over the configuration management process are important
and one of the primary drivers of DDL audits.

There are three main methods to audit schema changes:

1. Use database audit features

2. Use an external auditing system

3. Compare schema snapshots

Most database environments will allow you to audit DDL activity using
audit mechanisms, event monitors, traces, and so forth. As an example,
Oracle allows you to use system triggers based on DDL:

create table ddl_audit_trail

(

 user_id varchar2(30),

 ddl_date date,

 event_type varchar2(30),

 object_type varchar2(30),

 owner varchar2(30),

 object_name varchar2(30)

);

create or replace trigger

 DDL_trigger

AFTER DDL ON DATABASE

BEGIN

 insert into ddl_audit_trail (

 user_id,

 ddl_date,

 event_type,

 object_type,

 owner,

 object_name

)

 VALUES

 (

12.5

Audit database errors 361

Chapter 12

 ora_login_user,

 sysdate,

 ora_sysevent,

 ora_dict_obj_type,

 ora_dict_obj_owner,

 ora_dict_obj_name

);

END;

In DB2 you use audit traces, in SQL Server trace functions, and in
Sybase native auditing. In all cases it is up to you to extract the information,
produce reports, and create baselines if you want to do so. This is where the
second category comes in: external auditing tools. These tools not only col-
lect the information on your behalf, but they also provide the tools for
reporting, alerting, and advanced functions such as baselining.

The third category—comparing schema snapshots—does not give you a
detailed audit trail of DDL activity and is inferior to the other two catego-
ries but is relatively easy to implement and can be used as a temporary solu-
tion until you implement a true auditing infrastructure. It is based on
periodically collecting a full definition of the schema (typically once a day)
and comparing the schema with the schema from the night before. Even a
simple tool like diff can be used, because all you are trying to do in this
method is determine whether changes have occurred. Although this
method is fairly easy to implement, it suffers from the fact that when a
change is made, you cannot track down who did it, when, or why. Also, if
someone maliciously made a change, used it, and then rolled it back to
what it was before the change, you will not see it so long as the whole pro-
cess took less than a day. Therefore, this alternative is sometimes sufficient
in a configuration management initiative but is often not good enough in a
project driven by security or compliance requirements.

12.5 Audit database errors

Auditing errors returned by the database is important and is one of the first
audit logs you should implement. This is especially true from a security
standpoint, and you have seen many instances where this would be impor-
tant. For example, when we discussed SQL injection attacks in Chapter 5,
one of the things you learned is that in many cases attackers will make
many attempts until they get it right. The example used was a UNION-
based attack in which attackers need to guess the right number of columns.
Until they get the right number, the database will continuously return an
error code saying that the columns selected by the two SELECT statements

ronb
Note
logs->trails

362

12.5

Audit database errors

do not correspond. If you are logging all errors, you can identify this situa-
tion and react. Failed logins are another good example of an error that
needs to be logged and monitored, even if you are not auditing logins to the
database. Finally, any failed attempt to elevate privileges is a strong indica-
tor that an attack may be in progress.

Errors are also important from a quality perspective, and this also maps
well to compliance. Production applications that are causing errors because
of bugs and application issues should be identified and fixed. Logging SQL
errors is often a simple way to identify these problems. Therefore, even
when your primary concern is a security initiative, providing this informa-
tion to the application owners can make you a hero, because no one likes
running code that still has issues that can usually be easily resolved. If you’re
lucky, these errors might even point you in the direction of problems that
affect response time and availability.

Detailed error auditing is supported by some of the database vendors,
and you can refer to the reference guide of your environment to see how to
do this. In Oracle you can again use system triggers:

create table error_audit

(

 user_id varchar2(30),

 session_id number(8),

 host varchar2(30),

 error_date date,

 error varchar2(100)

);

Next, create the trigger to be fired upon a new login:

create or replace trigger

 audit_errors_trigger

AFTER SERVERERROR ON DATABASE

BEGIN

insert into error_audit values(

 user,

 sys_context('USERENV','SESSIONID'),

 sys_context('USERENV','HOST'),

 sysdate,

 dbms_standard.server_error(1)

);

COMMIT;

END;

ronb
Note
upon a new login->when an error occurs

12.5

Audit database errors 363

Chapter 12

In SQL Server you can use either auditing features or trace features. If
you choose to use traces, you need to set up the appropriate events that are
relevant to errors using

sp_trace_event

. These include the event IDs
shown in Table 12.1:

Multiple DB2 event monitors are relevant to error audits, and you may
have to use a number of these types. For each that you feel is needed, you
will need to filter those records that are related to errors. For example, you
should select CHECKING events for ACCESS DENIED records and look
at AUTHENTICATE_PASSWORD and VALIDATE_USER events in the
VALIDATE category.

Although error logging and auditing are possible in some environments,
this is one of the areas in which an external auditing system really shines
(especially one that is based on inspecting all requests and responses, as
described in Section 13.3).

If you monitor all incoming SQL calls and all
responses, tracking and reporting all errors is simple and does not put any

Table 12.1

Event IDs and description relevant to error audits

Event ID Event Class Description

16

Attention Collects all attention events, such as client-
interrupt requests or when a client connec-
tion is broken.

21

ErrorLog Error events have been logged in the error
log.

22

EventLog Events have been logged in the application
log.

33

Exception Exception has occurred in the server.

67

Execution Warnings Any warnings that occurred during the exe-
cution of a server statement or stored proce-
dure.

55

Hash Warning Hashing operation may have encountered a
problem.

79

Missing Column Statis-
tics

Column statistics for the query optimizer are
not available.

80

Missing Join Predicate Executing query has no join predicate. This
can result in a long-running query.

61

OLEDB Errors OLE DB error has occurred.

364

12.6

Audit changes to sources of stored procedures and triggers

additional burden on the database. Errors can be reported using any set of
criteria, and the information is readily available for building a baseline.

Baselining is important if your application environment is less than
perfect. Not every database and application environment is squeaky clean,
and in most environments some applications generate database errors even
in production. However, errors that are generated by the applications are
repetitive: the same errors occur at approximately the same place because
the errors usually result from bugs—and these don’t change. If you base-
line errors and suddenly see errors occurring from different places or you
see completely different error codes, then you should investigate what is
going on.

12.6 Audit changes to sources of stored procedures
and triggers

In Chapter 9

you learned about database Trojans and the importance of
monitoring code changes made to triggers and stored procedures. Because
these database constructs use flexible and fully featured procedural pro-
gramming languages, it is easy to hide malicious code that would otherwise
be undetectable. Therefore, you should adopt this best practice and audit all
changes made to these constructs.

As in previous sections, this category can also be audited in several ways.
The most primitive way is based on configuration control and can be
implemented by periodically (e.g., daily) retrieving the code from the data-
bases and comparing it with the code retrieved from the previous time

Figure 12.5

Real-time source
change tracking for

procedure source
code changes.

12.6

Audit changes to sources of stored procedures and triggers 365

Chapter 12

period. This method is relatively simple to implement using a set of tools
and scripts such as diff.

The second option, which was presented in Chapter 9, is to use an
external database security and auditing system. Such systems can alert you
on any create or modify command in real time and can easily produce a set
of reports detailing the changes—both for procedures (e.g., Figure 12.5)
and triggers (e.g., Figure 12.6).

The third option is to use a built-in database feature. For example, in SQL
Server you can use the Recompile event to track changes to stored procedure:

In most database environments, this feature would be supported
through DDL audits, although it is not always easy to extract the source
code from the commands and keep it in a way that is presentable to an
auditor.

Event ID Event Class Description

37

SP:Recompile Indicates that a stored procedure was recompiled.

Figure 12.6

Real-time source
change tracking for
trigger source code

changes.

366

12.7

Audit changes to privileges, user/login definitions, and other security attributes

12.7 Audit changes to privileges, user/login
definitions, and other security attributes

This category is a must-have for database auditing; you should maintain a
complete audit trail of any changes made to the security and privilege
model of your database. The database manages a sophisticated scheme of
security and permissions and changes, but the number-one rule in security
is that changes to the security model must be audited. You should consider
auditing the following changes:

�

Addition and deletion of users, logins, and roles

�

Changes to the mappings between logins and users/roles

�

Privilege changes—whether by user or role

�

Password changes

�

Changes to security attributes at a server, database, statement, or
object level

Because the security model within the database is the gateway, any
changes to permissions and privileges must be audited. Attackers will often
try to raise their privilege levels, and mistakes are often made when grants
are inappropriately provided. A full audit trail of all changes that may affect
the database’s security is therefore akin to placing a surveillance camera
watching the front door of the building, the place where the entry code is
changed, and the place where badges are issued

As in previous auditing categories, you have three methods for auditing
security attributes. However, because security permission changes can be
hazardous to the database (in case of an attack scenario), you shouldn’t rely
on a once-a-day type of comparison and should opt for real-time notifica-
tion of changes that are not planned in a production environment. This
means you should either use an external database security and auditing sys-
tem or build real-time alerts based on audit trails produced using built-in
database mechanisms.

If you are going to implement this system yourself, you will need to cap-
ture relevant events and then build the alerting framework. Generating
these events within the various database environments is similar to what
you have already seen in previous sections. As an example, Table 12.2 shows
you the relevant trace events available for SQL Server. In DB2, SEC-

ronb
Note
gateway->gateway to the database

ronb
Note
start a new paragraph here so that the DB2 part starts after the SQL Server table

12.7

Audit changes to privileges, user/login definitions, and other security attributes 367

Chapter 12

Table 12.2

Security-related SQL Server trace events

Event ID Event Class Description

102

Audit Statement
GDR

Occurs every time a GRANT, DENY, REVOKE
for a statement permission is issued by any user in
SQL Server.

103

Audit Object GDR Occurs every time a GRANT, DENY, REVOKE
for an object permission is issued by any user in
SQL Server.

104

Audit Add/Drop
Login

Occurs when a SQL Server login is added or
removed—

sp_addlogin

 and

sp_droplogin

.

105

Audit Login GDR Occurs when a Windows login right is added or
removed—

sp_grantlogin

,

sp_revokelogin, and
sp_denylogin.

106 Audit Login Change
Property

Occurs when a property of a login, except pass-
words, is modified—sp_defaultdb and
sp_defaultlanguage.

107 Audit Login Change
Password

Occurs when a SQL Server login password is
changed.

108 Audit Add Login to
Server Role

Occurs when a login is added or removed from a
fixed server role—sp_addsrvrolemember and
sp_dropsrvrolemember.

109 Audit Add DB User Occurs when a login is added or removed as a
database user (Windows or SQL Server) to a data-
base—sp_grantdbaccess, sp_revokedbaccess,
sp_adduser, and sp_dropuser.

110 Audit Add Member
to DB

Occurs when a login is added or removed as a
database user (fixed or user-defined) to a data-
base—sp_addrolemember, sp_droprolemember,
and sp_changegroup.

111 Audit Add/Drop
Role

Occurs when a login is added or removed as a database
user to a database—sp_addrole and sp_droprole.

112 App Role Pass
Change

Occurs when a password of an application role is
changed.

113 Audit Statement
Permission

Occurs when a statement permission (such as
CREATE TABLE) is used.

114 Audit Object Per-
mission

Occurs when an object permission (such as
SELECT) is used, both successfully or unsuccess-
fully.

368 12.7 Audit changes to privileges, user/login definitions, and other security attributes

MAINT is one of the six auditing categories and generates records when
granting and revoking object or database privileges, or when granting and
revoking DBADM authority. Records are also generated when the database
manager security configuration parameters SYSADM_GROUP,
SYSCTRL_GROUP, or SYSMAINT_GROUP are modified. Table 12.3
lists the possible SECMAINT privileges or authorities.

If you are using an external system that supports both auditing and real-
time alerts, then you can add rules to your alerting policy that will inform
you when security procedures or commands are used. For example, in an
Oracle environment, you need to audit all uses of GRANT, CREATE
USER, ALTER USER, DROP USER, REVOKE, CREATE ROLE,
ALTER PROFILE, CREATE PROFILE, ALTER ROLE, and so on. In this
case you can set up a group of commands you want to track, as shown in

Table 12.3 DB2 SECMAINT events

Event Description

Control Table Control privilege granted or revoked on a table or
view

ALTER TABLE Privilege granted or revoked to alter a table

ALTER TABLE with GRANT Privilege granted or revoked to alter a table with
granting of privileges allowed

DELETE TABLE Privilege granted or revoked to drop a table or view

DELETE TABLE with
GRANT

Privilege granted or revoked to drop a table with
granting of privileges allowed

Table Index Privilege granted or revoked on an index

Table Index with GRANT Privilege granted or revoked on an index with grant-
ing of privileges allowed

Table INSERT Privilege granted or revoked on an insert on a table or
view

Table INSERT with
GRANT

Privilege granted or revoked on an insert on a table
with granting of privileges allowed

Table SELECT Privilege granted or revoked on a select on a table

Table SELECT with
GRANT

Privilege granted or revoked on a select on a table
with granting of privileges allowed

Table UPDATE Privilege granted or revoked on an update on a table
or view

12.7 Audit changes to privileges, user/login definitions, and other security attributes 369

Chapter 12

Table UPDATE with
GRANT

Privilege granted or revoked on an update on a table
or view with granting of privileges allowed

Table REFERENCE Privilege granted or revoked on a reference on a table

Table REFERENCE with
GRANT

Privilege granted or revoked on a reference on a table
with granting of privileges allowed

CREATEIN Schema CREATEIN privilege granted or revoked on a
schema.

CREATEIN Schema with
GRANT

CREATEIN privilege granted or revoked on a
schema with granting of privileges allowed

DROPIN Schema DROPIN privilege granted or revoked on a schema

DROPIN Schema with
GRANT

DROPIN privilege granted or revoked on a schema
with granting of privileges allowed

ALTERIN Schema ALTERIN privilege granted or revoked on a schema

ALTERIN Schema with
GRANT

ALTERIN privilege granted or revoked on a schema
with granting of privileges allowed

DBADM Authority DBADM authority granted or revoked

CREATETAB Authority CREATETAB authority granted or revoked

BINDADD Authority BINDADD authority granted or revoked

CONNECT Authority CONNECT authority granted or revoked

Create not fenced
Authority

Create not fenced authority granted or revoked

Implicit Schema
Authority

Implicit schema authority granted or revoked

Server PASSTHRU Privilege granted or revoked to use the pass-through
facility with this server (federated database data
source)

Table Space USE Privilege granted or revoked to create a table in a table
space

Table Space USE with
GRANT

Privilege granted or revoked to create a table in a table
space with granting of privileges allowed

Column UPDATE Privilege granted or revoked on an update on one or
more specific columns of a table

Table 12.3 DB2 SECMAINT events (continued)

Event Description

370 12.7 Audit changes to privileges, user/login definitions, and other security attributes

Figure 12.7. Then, add a rule to a policy that alerts you when any such
command is used (e.g., the rule in Figure 12.8). The rule within the policy
ensures that you will get an alert on such a command, but even without it
you will still have a full audit trail that includes all occurrences of any one of
the commands in the group.

Column UPDATE with
GRANT

Privilege granted or revoked on an update on one or
more specific columns of a table with granting of
privileges allowed

Column REFERENCE Privilege granted or revoked on a reference on one or
more specific columns of a table

Column REFERENCE with
GRANT

Privilege granted or revoked on a reference on one or
more specific columns of a table with granting of
privileges allowed

LOAD Authority LOAD authority granted or revoked

Package BIND BIND privilege granted or revoked on a package

Package BIND with
GRANT

BIND privilege granted or revoked on a package with
granting of privileges allowed

EXECUTE EXECUTE privilege granted or revoked on a package
or a routine

EXECUTE with GRANT EXECUTE privilege granted or revoked on a package
or a routine with granting of privileges allowed

EXECUTE IN SCHEMA EXECUTE privilege granted or revoked for all rou-
tines in a schema

EXECUTE IN SCHEMA with
GRANT

EXECUTE privilege granted or revoked for all rou-
tines in a schema with granting of privileges allowed

EXECUTE IN TYPE EXECUTE privilege granted or revoked for all rou-
tines in a type

EXECUTE IN TYPE with
GRANT

EXECUTE privilege granted or revoked for all rou-
tines in a type with granting of privileges allowed

CREATE EXTERNAL
ROUTINE

CREATE EXTERNAL ROUTINE privilege granted
or revoked

QUIESCE_CONNECT QUIESCE_CONNECT privilege granted or revoked

Table 12.3 DB2 SECMAINT events (continued)

Event Description

12.8 Audit creations, changes, and usage of database links and of replication 371

Chapter 12

12.8 Audit creations, changes, and usage of
database links and of replication

Contrary to some of the previous categories, audits for links, synonyms, or
nicknames and auditing of replication processes is an example where a peri-
odic extraction and comparison is usually good enough. While you still
have the three options—comparing snapshots, using the database’s internal
audit mechanisms, and using an external auditing and security system—a
simple implementation using daily diffs is often good enough. In this case
you only need a script that queries these definitions and places them into a
file that you can use to compare with the next day.

If you prefer auditing using the internal database auditing mechanisms
or using an external auditing system, then you will have to base these audit
trails on objects and commands. In most database environments, there are
no specific audit capabilities for replication and links. However, there are

Figure 12.7
Group of

commands used for
tracking changes to

privileges in
Oracle.

Figure 12.8
A real-time alert

based on the group
of commands

shown in Figure
12.7.

372 12.9 Audit changes to sensitive data

many specific objects and commands that you can audit on. These were
listed in Chapter 8. For example, Table 8.1 shows commands using an Ora-
cle-centric replication scheme, Figures 8.6 and 8.7 show DB2 objects
related to replication, and Figures 8.13 to 8.15 show SQL Server objects
related to replication.

12.9 Audit changes to sensitive data

Auditing of DML activity is another common requirement, especially in
scenarios such as a Sarbanes-Oxley project where accuracy of financial
information is the main event. Data change audit trails are common in
almost all major auditing initiatives.

A related auditing requirement that sometimes comes up (although it is
not as common as the need to audit the DML activity) involves full record-
ing of the old and the new value per DML activity. For example, you may
need to create an audit trail for the column of an employee table in which
yearly bonuses are stored. In this case you may have two different require-
ments. The first may be to fully record any update to these values and for
each update record the user who performed the update, which client was
used, which application was used, when it was done, and what the actual
SQL statement was. A second requirement may be to record all of the
above information but also record what the value was before the update
and what the value was after the update. This is not always the same thing
because I can give myself 50% more of a bonus by using a command such
as the following:

UPDATE EMP SET BONUS = BONUS * 1.5

DML audit trails and recording old and new values are an important
type of audit that you will probably need to include in your bag of tricks.
However, you have to be careful with this category and realize that these
audits should be done selectively. In some cases, people are overzealous
about this type of audit trail and for the sake of simplicity think about acti-
vating it for every DML operation. While this is technically possible, the
amount of data produced can be large, and you should make sure that your
auditing infrastructure can manage this load, especially when you include
the old and new values. As an example, suppose that you have 1 million
DML transactions per day, and assume for simplicity that each transaction
updates a single value, that you have 100 tables in the database each one
with 10 values that may be updated, and that you start out with a database

12.9 Audit changes to sensitive data 373

Chapter 12

that has 10,000 records in each table. Although this calculation is simplistic
and imprecise, you should not be surprised that if you record old and new
values, after one year your auditing database will be more than 35 times
larger than the database itself.

Therefore, when you contemplate DML audit trails, you should selec-
tively choose which objects and which commands to audit. For example,
you can decide to create audit trails for a subset of the database tables, for a
subset of logins or accounts, and so on. Even more selective is the choice of
which tables and columns to maintain old and new values for.

DML audits are also supported through three main methods, but com-
paring daily (or periodic) snapshots is not an option in this case. The three
methods are using database capabilities, using an external audit system, or
using triggers.

All databases give you some way to implement audit trails for DML
activities. In Oracle, for example, you can use the log miner tool that is
based on the redo log. Because the redo log captures all DML activity
(including the old and new values), log miner can extract this information
and make it available to you. In SQL Server you can use a DOP trace event:

Moving on to the second category, external database audit systems sup-
port DML audits based on any filtering criteria, including database object,
user, application, and so on. They also help in capturing and compressing
this information and making it available to reporting frameworks even
when the amount of data is overwhelming. As you’ll see in the next chapter
(Section 13.3), some of these tools are also based on mining the redo log (or
transaction log).

Finally, the third option is simply to use your own custom triggers. This
option is technically inferior to the other two options, but if you are not
part of a widescale auditing project and just need to create a DML audit
trail for a few objects, adding triggers that write the information to a special
audit table may be the simplest and quickest thing to help you move on to
your next project.

Event ID Event Class Description

28 DOP Event Occurs before a SELECT, INSERT, or UPDATE state-
ment is executed.

ronb
Note
delete "Thisoption is technically inferior to the other two options, but"

374 12.10 Audit SELECT statements for privacy sets

12.10 Audit SELECT statements for privacy sets

SELECT statements have not been the focus of audit trails in the past, but
the recent focus on privacy has changed all that. If you need to ensure pri-
vacy for a California Senate Bill 1386 project, need to conform to GLBA-
type privacy issues, or just need to assure your customers, partners, and
employees that their confidential information does not leak from your data-
bases, then you will have to start to audit SELECT statements. Specifically,
you will need to be able to display where the SELECT statement came from
(IP address, application), who selected the data (username), and what data
was actually selected. As in the case of DML audit trails, auditing of
SELECT statements is impractical for the entire database, and you need to
focus on subsets that are meaningful and necessary.

The first step is a classification of what data is important in terms of a
SELECT audit trail. I call this a privacy set because in real life collections of
data values together are important from a privacy perspective. For example,
my last name is not confidential, but my last name together with my
driver’s license number and my Social Security number is confidential. In
the classification stage you should define where confidential information
resides (which object names and which column names) and what combina-
tion is confidential. A privacy set is therefore a collection of 2-tuples, each
tuple consisting of an object name and a column name.

Suppose, for example, that you have two tables for recording personal
and driving information. The first table is called PERSON and the second
is called LICENSE. Assume that these tables include the following fields:

PERSON

ID—int 10

FirstName—varchar 25

MiddleInitial—char 1

LastName—varchar 25

LICENSE

LicNum—varchar 12

State—varchar 2

PersonID—int 10

In this case your privacy set may be:

12.11 Audit any changes made to the definition of what to audit 375

Chapter 12

{<PERSON, FirstName>, <PERSON, LastName>, <LICENSE, LicNum>}

In order to audit the privacy set, you need to ensure that the value for
<LICENSE, LicNum> comes from the record with a PersonID matching the
ID in the record from which <PERSON, FirstName> and <PERSON, Last-
Name> are derived. Once you classify where your private information
resides, you can turn to creating audit trails. This will ensure that you’re not
collecting too much information to process.

Creating SELECT audit trails is usually more difficult than for other
audit categories. Obviously, snapshots are not an option here and neither are
triggers, so you’re left with using database traces or an external auditing sys-
tem. There is also the option of building views with custom logging, but that
tends to be too much work and requires too many changes. Even when using
internal database features, your options are a bit more limited. For example,
even if you have support for SELECT traces (e.g., using the DOP event in
SQL Server as shown following), it is often not practical because you would
be collecting too much information and would need to apply filters.

Therefore, when you need to do SELECT auditing, your best choice is
often to use an external database auditing system. Note that not all
approaches (see Section 13.3) support SELECT auditing; as an example, a
solution that is based on the transaction log (the redo log) will not help
with a SELECT audit trail.

12.11 Audit any changes made to the definition of
what to audit

Audit changes made to the definition of the audit trail and any modifica-
tion that may be made to the audit trail itself. If you have cameras looking
at a building, you will want to monitor any maintenance made to the cam-
eras and any changes made to the cameras in terms of where they are point-
ing. Otherwise, an intruder could first point the cameras at the wall (or
attach a static picture to the camera as we’ve all seen in many movies) and
then proceed to walk right through the door. In the same way, if you do not
audit changes made to the audit trail, an attacker can either change the def-
initions of what is being audited or can come after the fact and change the

Event ID Event Class Description

28 DOP Event Occurs before a SELECT, INSERT, or UPDATE state-
ment is executed.

ronb
Note
following->below

376 12.12 Summary

audit trail. Note that one part of this category involves an additional audit
trail and one part involves the notion of segregation of duties, which was
discussed in Chapter 11 and is discussed further in Section 13.2.

You can implement this audit trail using built-in database features or an
external database security and auditing system. As an example, DB2 has an
audit category called AUDIT that generates records when audit settings are
changed or when the audit log is accessed, and SQL Server has the follow-
ing trace event that you may use:

If you choose to use an external auditing system, make sure it imple-
ments full auditing capabilities within itself, as described in Section 13.6.

12.12 Summary

In this chapter you learned about the various categories of audit trails that
you may need to implement in order to secure your database environment
and/or in order to comply with regulatory or internal requirements. As
mentioned in Chapter 11, while requirements may differ, they are usually
easily mapped to a set of database auditing capabilities. These were the
main focus of this chapter and were cataloged by this chapter.

In addition to selecting among the various auditing categories that are
relevant to your needs, you need to select the methods and systems used to
implement audit trails and may need to make architectural decisions. These
are important because auditing is not a one-time effort, and anything you
put in place must be sustainable over time. Therefore, you should under-
stand what the different options are and what attributes to look for, which
is the topic of the next chapter.

Event ID Event Class Description

117 Audit Change Audit Occurs when audit trace modifications are made.

ronb
Note
delete this paragraph

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 150
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

